

RESPIRATORY CONDITIONS AFFECTING SURGICAL OUTCOME

Dr Brandon Wong | Respiratory and Sleep Physician Fiona Stanley Hospital

INTRODUCTION

Respiratory patients have unique risk factors that can make surgery and anaesthesia challenging

- Abnormal lung mechanics
- Gas exchange abnormalities
- Pulmonary hypertension
- Comorbid conditions
- Frailty and cachexia

OUTLINE

CONDITIONS

- Obstructive sleep apnoea
- Chronic Obstructive Pulmonary Disease (COPD)
- Interstitial lung disease

OBSTRUCTIVE SLEEP APNOEA

Condition characterised by airway obstruction during sleep resulting in repeated oxygen desaturation and arousals.

Normal

During normal sleep, the muscles that control the tongue and soft palate hold the airway open.

Snoring

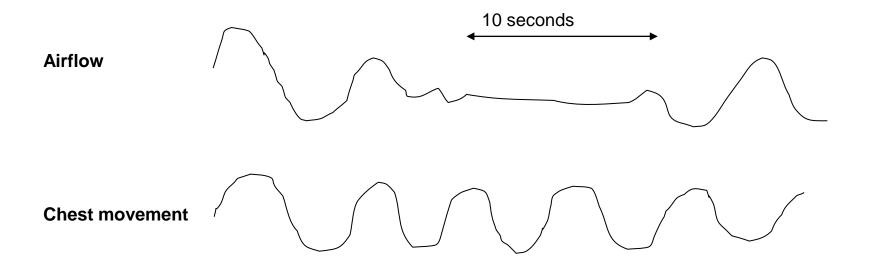
When these muscles relax, the airway narrows. This can lead to snoring and breathing difficulties.

OSA

If the muscles relax too much, the airway can collapse and become blocked, obstructing breathing.

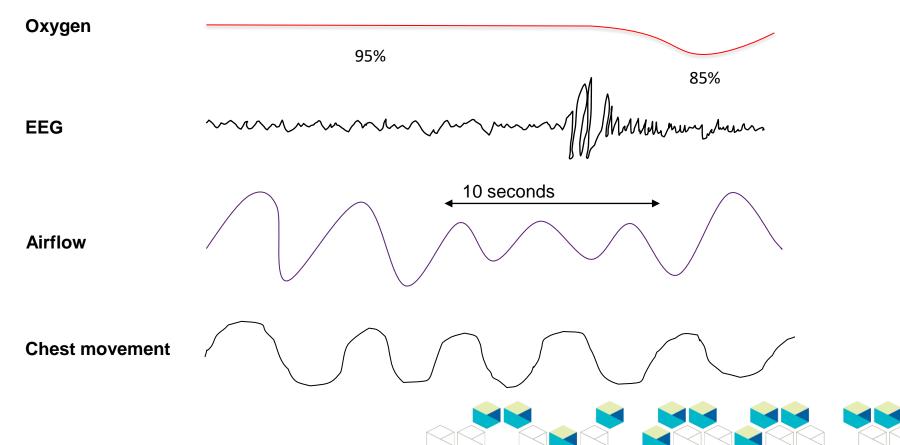
Types of Sleep Apnea. Image sourced from Clinical Sleep Solutions Inc.

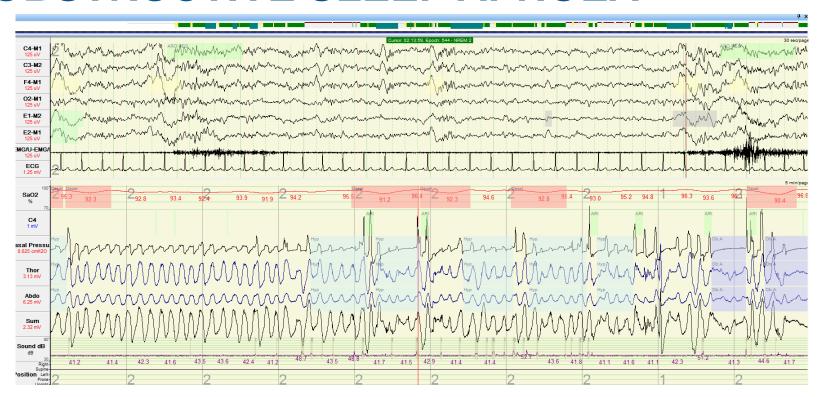
OBSTRUCTIVE SLEEP APNOEA


OSA impact on surgery

- Two to fourfold higher risk for perioperative complications compared to patient's without OSA
- Respiratory complications (oxygen desaturation, respiratory failure, difficult airway management)
- Cardiovascular complications (myocardial infarction, atrial fibrillation, stroke)

Obstructive apnoea




Hypopnoea

OSA diagnosis and severity

- AHI = (apnoeas + hypopnoeas) /hr slept
- Normal: AHI<5
- Mild OSA: AHI = 5-15
- Moderate OSA: AHI = 15-30
- Severe OSA: AHI>30
- Prevalence clinically important Adult OSA = 6-17%

OBSTRUCTIVE SLEEP APNOEA

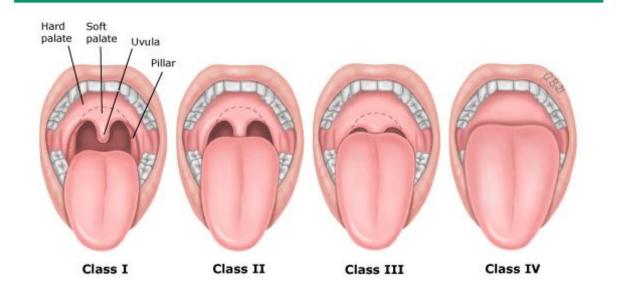
Sample Obstructive Sleep Apnoea reading

LAB BASED SLEEP STUDY

What it's like to spend the night in a sleep lab. Image sourced from Huffpost, Klein (2015).

Home sleep studies

Home Sleep Apnea Testing. Image sourced from Dream Sleep Testing.



Upper airway anatomy

The modified Mallampati classification for difficult laryngoscopy and intubation

Samsoon GL, Young JR. Difficult tracheal intubation: a retrospective study. Anaesthesia 1987; 42:487

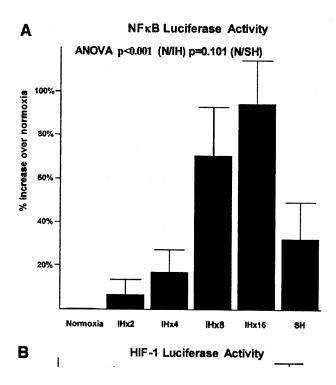
OSA: risk factors

Narrow upper airway

Oropharyngeal Exam Predicts Severity of Sleep Apnea. Image sourced from Medscape, Fox (2011).

Sleep fragmentation

- Study exposed healthy volunteers to a sound every 2 mins which caused an EEG arousal
- Increased sleepiness, increased fatigue, decreased concentration, decreased mood compared to normal sleep
- Increased risk of motor vehicle accidents (X2-5 risk)


American Journal of Respiratory and Critical Care Medicine, Vol. 153, No. 4 | Apr 01, 1996

Intermittent hypoxia: Circulation

OBESITY HYPOVENTILATION SYNDROME

Obesity

Hypoventilation

Absence of other conditions that can cause hypoventilation

OBSTRUCTIVE SLEEP APNOEA

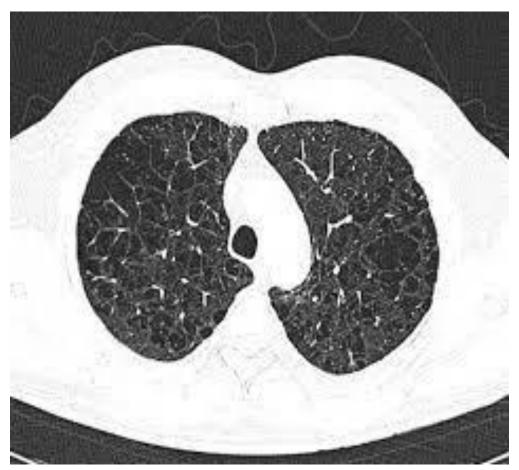
Management of perioperative risk

- Pre surgery: Screen for undiagnosed sleep apnoea/OHS/pulmonary hypertension, optimise co-morbid conditions, continue OSA treatment until day of surgery and bring in OSA treatment devices
- Post surgery: Upright positioning, opioid sparing analgesic techniques, postoperative PAP therapy, postoperative monitoring

COPD

Heterogenous lung condition characterized by chronic respiratory symptoms (dyspnoea, cough, sputum production) due to abnormalities of the airways (bronchitis, bronchiolitis) and/or alveoli (emphysema) that cause persistent, often progressive airflow obstruction.

Diagnosis


 Lung function testing: Spirometry: Reduced FEV1, reduced FEV1/FVC ratio, reduced DLCO (gas transfer), lung hyperinflation (increased total lung capacity), gas trapping (increased residual volume)

		Pre – Bronch			Post – Bronch		
	Actual	Pred	%Pred	Actual	%Pred	%Chng	
SPIROMETRY							
FEV1 (L)	1.29	3.5	37	1.33	38	3	
FVC (L)	4.8	4.51	106	4.87	108	1	
FEV1/FVC (%)	27	78	35	27	35		
FEF 50% (L/sec)	0.41	4.56	9	0.45	10	10	
FEF Max (L/sec)	2.13	9.05	24	2.62	29	23	
LUNG VOLUMES							
RV(Pleth) (L)		2.16		3.09	143		
TLC (Pleth) (L)		6.77		7.97	118		
RV/TLC (Pleth) (%)		32		39	122		
SVC		4.51					
TGV		3.5		4.43	127		
DIFFUSION							
VA(L)		6.77		5.64	83		
DLCOunc (ml/min/mmHg)		27.02		14.67	54		
DLCOcor (ml/min/mmHg)		27.02					
DL/VA (ml/min/mmHg/L)		3.99		2.6	65		

Sample Pulmonary Function Tests results

Cuete D, Centrilobular pulmonary emphysema. Case study, Radiopaedia.org (Accessed on 20 May 2024) https://doi.org/10.53347/rID-2680

COPD

Disadvantageous lung physiology

- Loss of lung tissue resulting in loss of elastic tissue lung recoil
- Gas trapping, lung hyperinflation
- Bronchial wall inflammation/oedema, increased mucosal secretions
- Gas exchange disturbances (VQ mismatch)

COPD

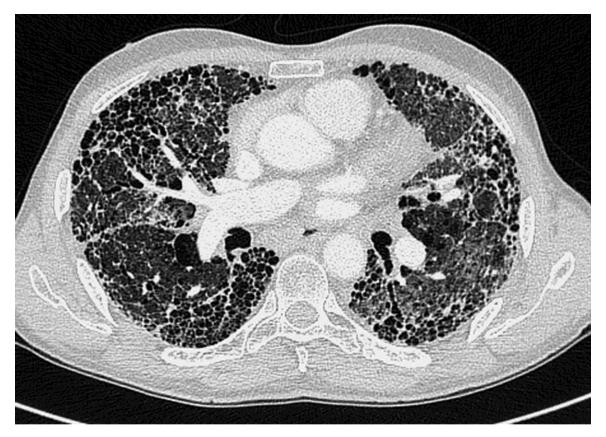
Perioperative considerations in COPD

- Increased risk of pulmonary and cardiac complications
- Pre-anaesthesia optimisation: inhaled bronchodilators, pulmonary rehab, brief course oral glucocorticoid therapy, smoking cessation
- Avoidance of general anaesthetic if possible, lung protective anaesthesia
- Post-anaesthesia care: Resumption of bronchodilator therapy, use of incentive spirometry, early abulation. Avoid over-oxygenation in patients at risk of hypoventilation

- Heterogenous group of disorders characterised by disorders that effect the lung interstitium
- Over time, if progressive these diseases cause the interstitium to thicken and develop fibrosis

Idiopathic pulmonary fibrosis: Chronic progressive scarring of the interstitium of unknown cause (idiopathic)

Non specific interstitial pneumonitis (NSIP): ILD that often occurs with autoimmune diseases (scleroderma, rheumatoid arthritis, dermatomyositis)


Asbestosis: Caused by asbestos exposure

Sarcoidosis: Granulomas occur in various tissues (most commonly in lungs and thoracic lymph nodes)

Cottin, et al., (2014). Diagnosis and Management of Idiopathic Pulmonary Fibrosis: French practical guidelines. European respiratory review: an official journal of the European Respiratory Society. 23. 193-214. 10.1183/09059180.00001814.

Fibrosis causes increased lung recoil and reduced gas transfer

	Pre – Bronch			Post – Bronch			
	Actual	Pred	%Pred	Actual	%Pred	%Chng	
SPIROMETRY							
FEV1 (L)	2.78	3.09	90	2.89	94	4	
FVC (L)	3.38	4.15	81	3.43	83	1	
FEV1/FVC (%)	82	75	109	84	112	2	
FEF 50% (L/sec)	4.09	3.63	113	4.33	119	6	
FEF Max (L/sec)	8.02	7.92	101	7.9	100		
LUNG VOLUMES							
RV(Pleth) (L)	1.07	2.62	41				
TLC (Pleth) (L)	5.38	7.22	75				
RV/TLC (Pleth) (%)	20	38	53				
SVC	4.3	4.15	104				
TGV	3.87	3.89	99				
DIFFUSION							
VA(L)		7.22		5.04	70		
DLCOunc (ml/min/mmHg)		33.67		13.87	41		
DLCOcor (ml/min/mmHg)		33.67					
DL/VA (ml/min/mmHg/L)		4.66		2.75	59		

[&]quot;Spirometry reference equations GLI-2012"

- Pre anaesthetic: Optimise respiratory function, assess for pulmonary hypertension, pulmonary rehabilitation, weigh up risk/benefit ratio of surgery
- Intra-operative management: Sitting position, if possible, low tidal volumes (avoid high inspiratory pressures)
- Post-operative management: Ensuring adequate anaesthesia, prevention of atelectasis, respiratory support as needed

Take home messages

- Respiratory patients have a unique set of perioperative risks
- Careful screening, assessment and optimization of respiratory patients prior to surgery is important
- Risk/benefit assessment

