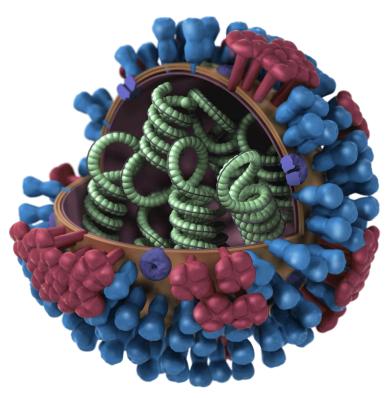
Influenza in 2025: a program at the crossroads

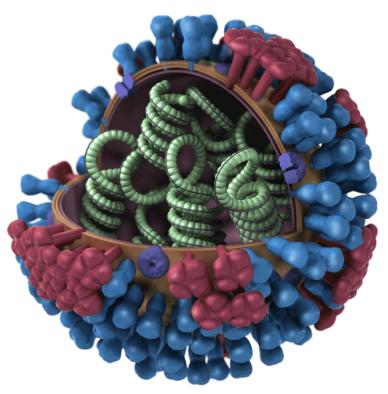
Chris Blyth

Professor, School of Medicine, UWA Head, Wesfarmers Centre of Vaccines and Infectious Diseases, TKI ID physician, Department of Infectious Diseases, PCH Clinical Microbiologist, PathWest Laboratory Medicine WA christopher.blyth@uwa.edu.au

WESFARMERS CENTRE OF VACCINES & INFECTIOUS DISEASES

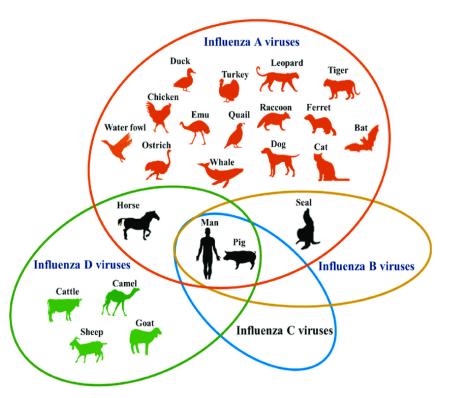


"Each year enormous effort goes into producing influenza vaccines for that specific year and delivering them to appropriate sections of the population. Is this effort justified?"


> Influenza vaccination: policy versus evidence Tom Jefferson, 2006

Summary

- The virus
- Seasonal influenza and who is at risk?
- Influenza vaccines and do they work?
- Emerging influenza viruses / HPAI
- Next steps

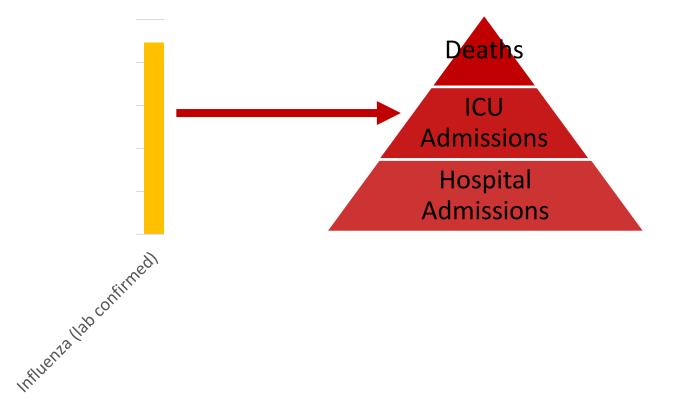

- Family of enveloped RNA viruses with a segmented genome
 - Influenza A strain shift and drift
 - Influenza B strain drift
 - Influenza C rarely causes disease
- Unique features
 - Haemogglutinin
 - Neuraminidase
 - Segmented genome

- RNA polymerases lack the ability to proof-read
 - Mutations occur more frequently with RNA viruses
 - Mutations result in periodic changes in haemogglutinin: **Strain drift**
- Strain drift makes immunity short lived: annual epidemics

 A segmented genome allows the genetic reassortment of the influenza genome: Strain shift

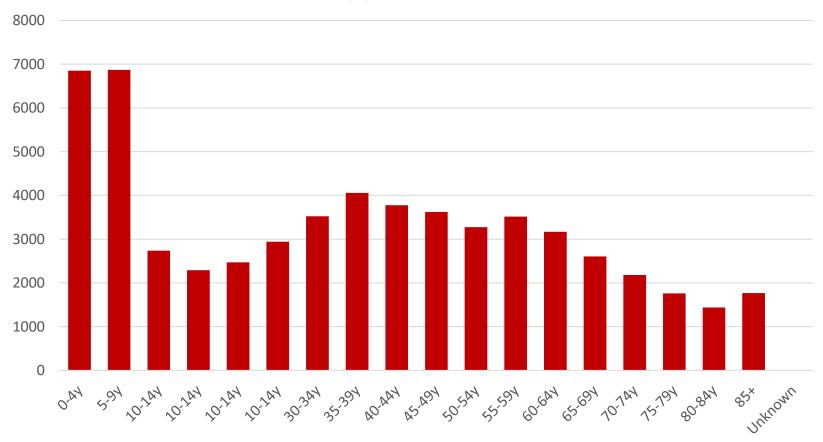
Each year, approximately 10% of the worlds population catch influenza.

LE REARING REARING

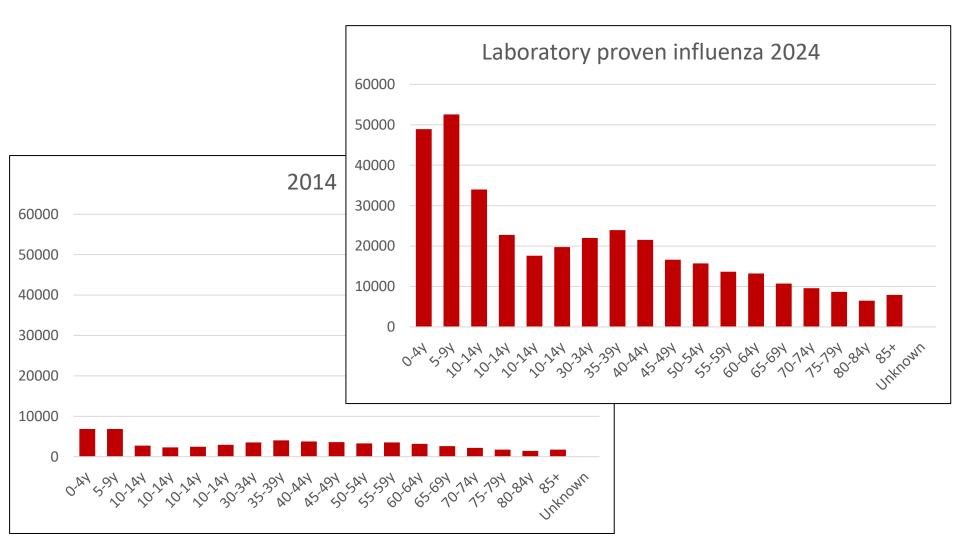

ERREARARE CORRELE CONTRACTOR CONTRACTOR CONTRACTOR

<u>ABARBARARA</u>

A STAR SALER AL SALER ARRADALOLO


eacadalalalalalalalalal

How many people get the flu?

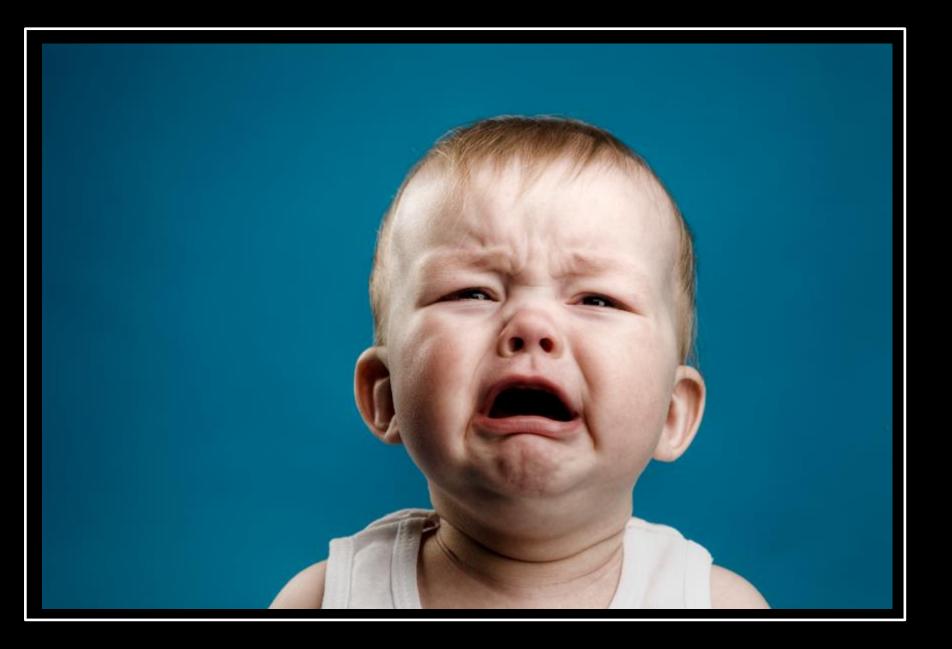


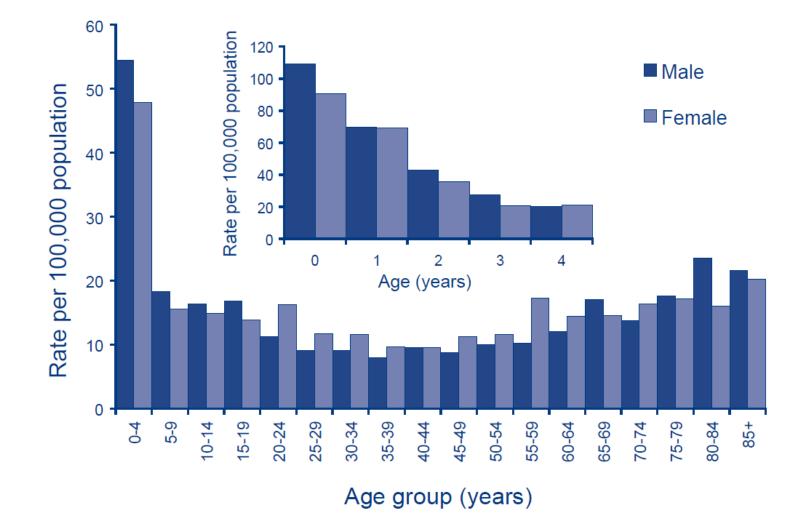
How many people get the flu?

Laboratory proven influenza 2014

How many people get the flu?

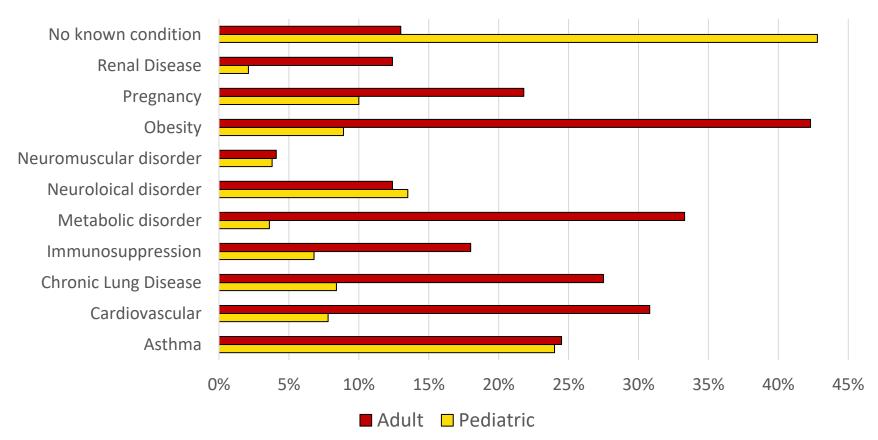
NNDSS March 2025

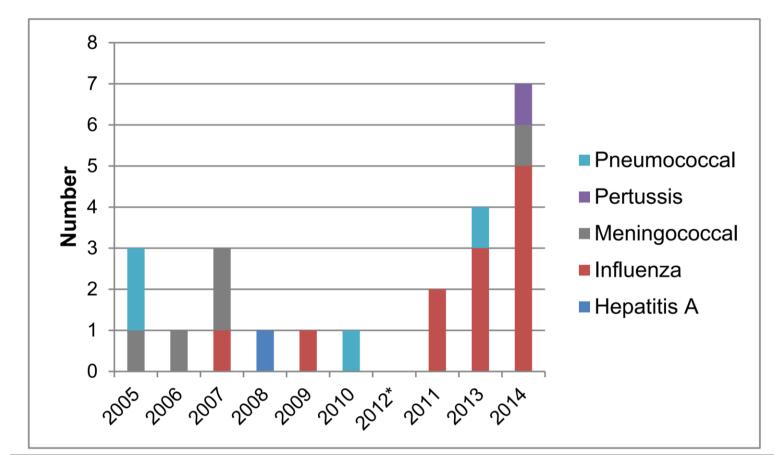

Summary


The virus

- Seasonal influenza and who is at risk?
- Influenza vaccines and do they work?
- Emerging influenza viruses / HPAI
- Next steps

Who is at risk?


- We are all susceptible to influenza infection
- Specific populations are at greatest risk of morbidity and mortality
 - The young
 - The elderly
 - Those with underlying comorbid conditions
 - Pregnant people
 - Aboriginal people



Owen R et al. CDI 2008

Risk factors in paediatric and adult influenza-associated deaths

http://gis.cdc.gov/GRASP/Fluview/PedFluDeath.html

NCIRS NSW report, 2016

Flu kills three young children

PETA RULE and DEBBIE GUEST

Three children have been killed by the flu in Perth in the past few days, prompting experts to issue an urgent warning that parents should take their children to the doctor as soon as they show signs of the illness.

The three children were all under five and lived in the metropolitan area. It is understood each of them died within 24 hours of showing the first signs of the flu, which doctors say was a form of the common influenza A strain. They warned that listlessness, cough and fever were the key symptoms parents should look for and unged them to seek medical advice immediately.

"While we do not want to create unnecessary panic, it is important for parents to be aware that the disease can cause serious illness within 24 hours," Health Department director of communicable disease control Paul Van Buynder said last night.

Two of the deaths were at Princess Margaret Hospital and at least two of the children had also contracted pneumonia as a result of the virus, which could have contributed to their deaths. Doctors across the State have been warned that they may be inundated by worried parents, prompting the Health Department to advise them of the details of the deaths.

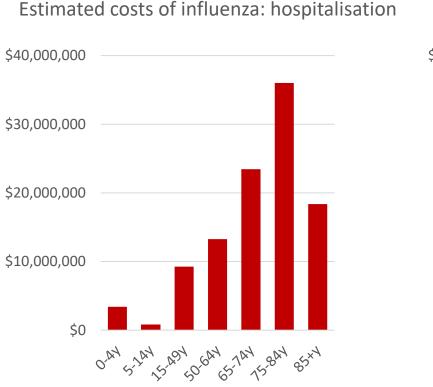
Australian Medical Association president Gooff Dobb said influenza A strain was one of the most common during winter and that West Australians were particularly vulnerable because it had been several years since the last flue epidemic.

He said parents should not be worried if their children simply had a runny nose and headache, though they should look out for a fever above 38C.

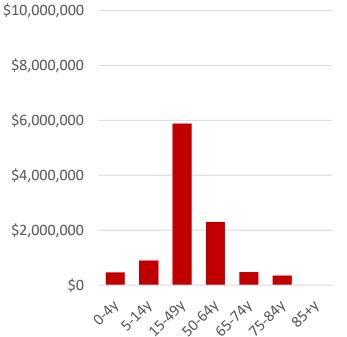
"The critical thing is the combination of a fever and a cough," he said. "What we're talking about here is not just having a runny nose and feeling unwell, often people refer to that loosely as having the flu. A true influenza will make you feel really unwell, more severe with cough fever and muscular aches and pain."

He said that unlike the flu, people with a cold may have a sore throat and runny nose, followed by a cough, but without a significant fever.

Parents can call Health Direct on 1800 020 080 for advice and locations of their nearest after-hours clinic.


Copyright Agency Limited (CAL) licensed copy

Hospitalised paediatric flu in Australia


- 30-35% are < 2 years; 60-70% are < 5 years</p>
- 5-8% Indigenous
- 35-45% have comorbidities
- 8-14% admitted to intensive care
- Median length of stay 3 days (IQR 1-5d)
- Death is uncommon (but occurs, every year)

Influenza in the elderly

Estimated costs of influenza: GP visits

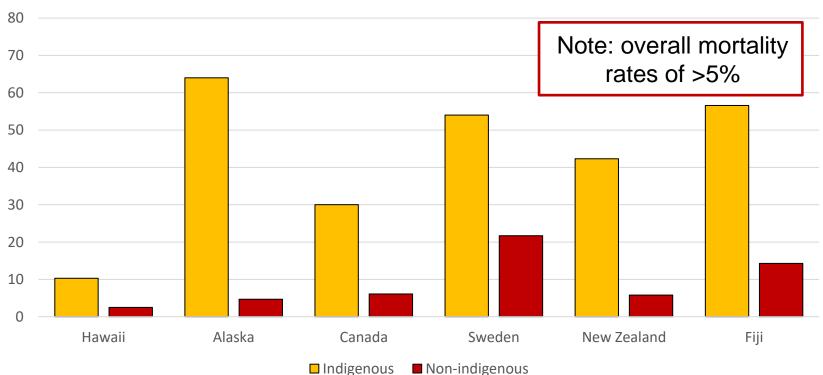
\$115 million (\$72.3–\$170.1M) dollars per annum

Influenza in the elderly

Hospitalised flu in older Australians

- 30% are 65-79 years; 30% are 80 years+
- 4-6% are Indigenous
- 80% have comorbidities; 5-7% are NH residents
- 1-2% are pregnant
- 8-14% admitted to intensive care
- Median length of stay 6 days (IQR 4-10d)
- In hospital mortality: 3-6% in elderly adults

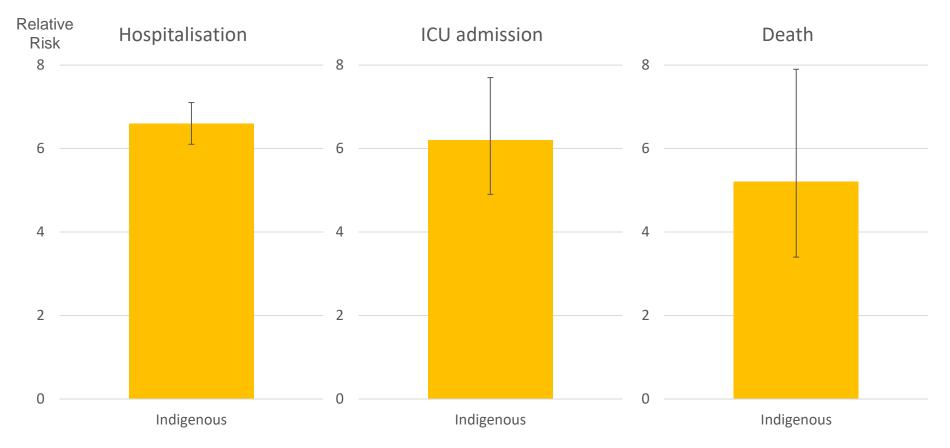
High risk of complications


- Heart disease (Cyanotic CHD, CAD, CHF)
- Chronic lung disease (Bronchiectasis, COPD, sev. asthma)
- Chronic neurological condition
- Immunosuppressive conditions
- Chronic renal failure
- Chronic liver disease
- Obesity
- Diabetes and specific metabolic disorders
- Trisomy 21, Chronic aspirin use (children)

Ahmed R. Nature Immunology 2007

Indigenous populations

1918: Pneumonia and influenza

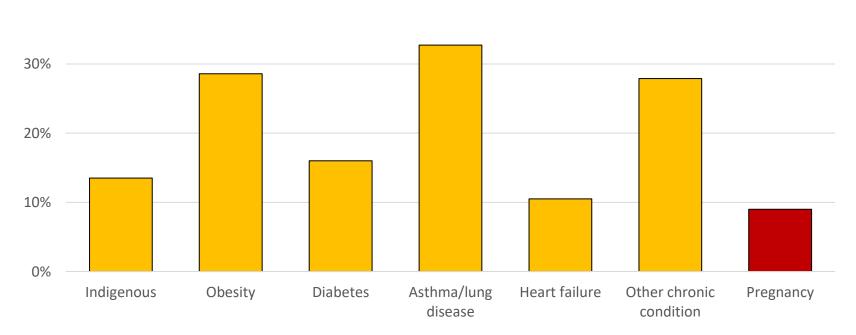


Pneumonia and influenza mortality (per 1000 popⁿ)

Mamelund SE. Epidemics 2011

Australian indigenous populations

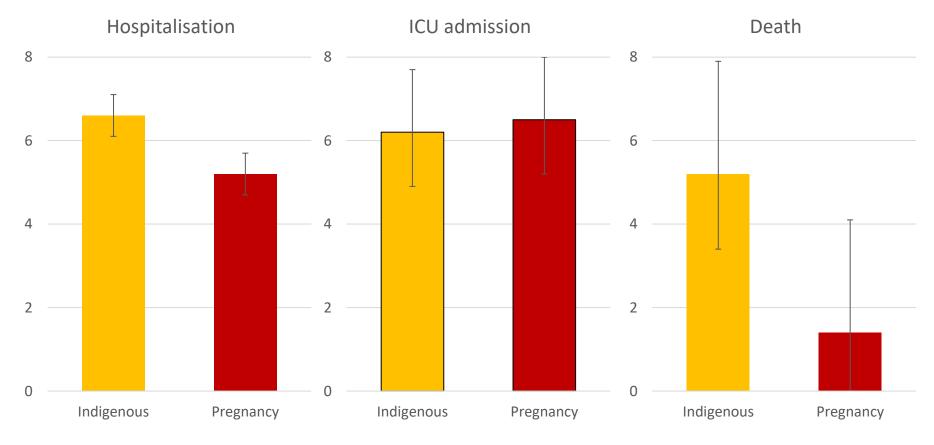
Pandemic influenza



Pregnant women

40%

Pregnancy is an independent risk factor for severe influenza


Risk factors in adults admitted to ANZ ICU's with influenza 2009

ANZIC Investigators, NEJM 2009

Pregnant women

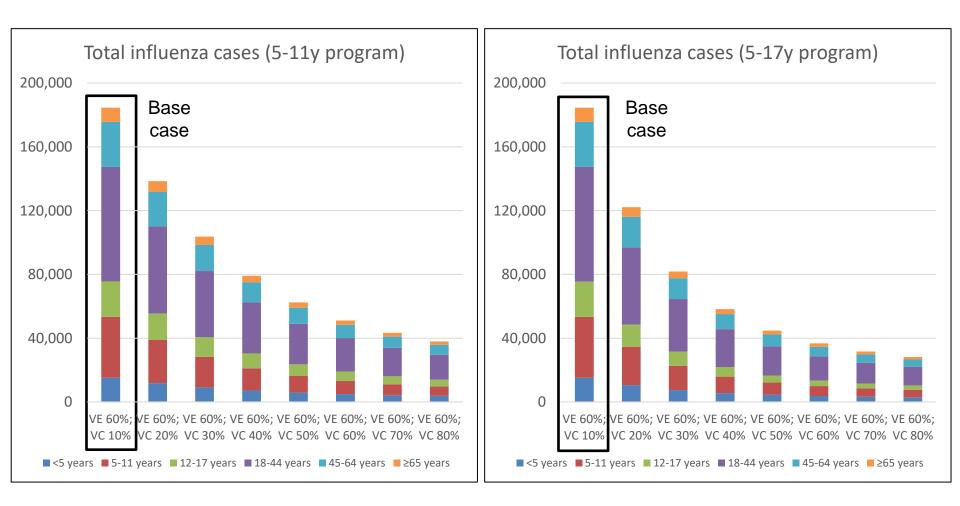
Pregnancy is an independent risk factor

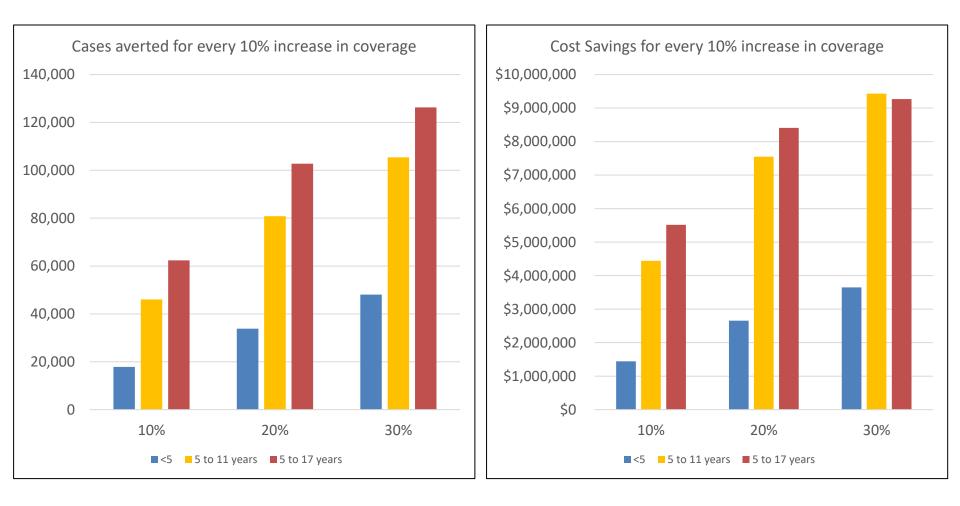
Who is at risk?

We are all susceptible to influenza infection

 Specific populations are at greatest risk of morbidity and mortality

 School age children are at greatest risk of transmission


School children


Vaccinate the Vectors

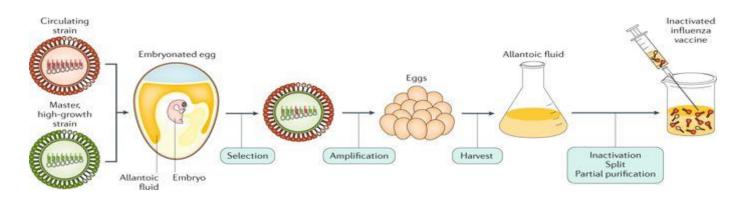
Protect the grandparents

School children

School children

Who is at risk?

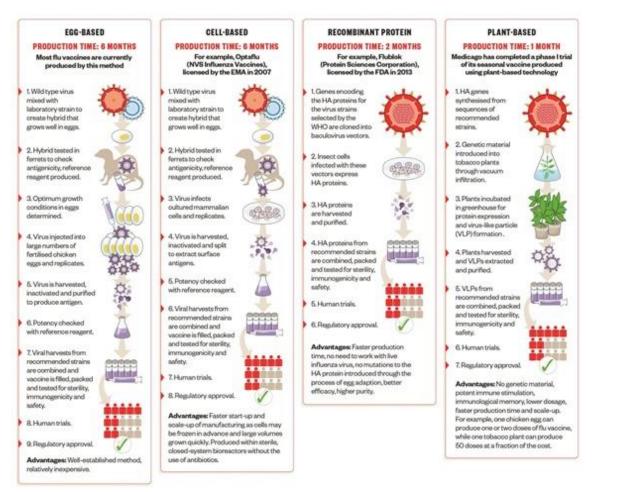
- We are all susceptible to influenza infection
- Specific populations are at greatest risk of morbidity and mortality
- School age children are at greatest risk of transmission


So, although we are all at risk, some are at higher risk Strategies must be targeted, ensuring we reach those at greatest risk of influenza-associated harm

It will take more than "free-flu vaccine"

Summary

- The virus
- Seasonal influenza and who is at risk?
- Influenza vaccines and do they work?
- Emerging influenza viruses / HPAI
- Next steps


How to make an influenza vaccine?

- Chose virus and inject into fertilized egg
- Incubate egg and allow for viral replication
- Collection virus-laden allantoic fluid from egg
- Deactivate and split virus
- Purify hemagglutinin
- Mix with other strains

How to make an influenza vaccine?

Egg-free technologies being utilised

Do they work?

	Test-positive cases		Test-negative controls		s	Vaccine effectiveness (95% CI)		
	Vaccinated	Total	Vaccinated	Total	-			
Any influenza								
Australia	380	2856	541	1545		67.5% (60.8 to 73.0)		
Brazil	127	509	643	2053	_∎-	29·3% (8·8 to 45·1)		
Chile	115	451	1313	2331		56·9% (44·8 to 66·3)		
New Zealand	28	207	190	650	│ 	58·8% (34·5 to 74·1)		
Thailand	7	154	36	580		38·8% (-49·1 to 74·9)		
Uruguay	11	132	91	802		15·5% (-70·1 to 58·1)		
Random-effects model					\diamond	51.9% (37.2 to 66.7)		
Heterogeneity: <i>l</i> ² =74%, τ ² =198·87, p<0·01					-			
Influenza A								
Australia	324	1824	541	1545		59·2% (50·5 to 66·3)		
Brazil	106	409	643	2053	⊢-⊞-	25·4% (1·7 to 43·4)		
Chile	94	386	1313	2331		55·6% (41·8 to 66·1)		
New Zealand	24	147	190	650	│ — ड -	56·3% (27·7 to 73·5)		
Thailand	6	121	36	580	-	39·4% (-56·5 to 76·5)		
Uruguay	9	110	91	802	_	21.5% (-69.8 to 63.7)		
Random-effects model					\diamond	49.5% (36.5 to 62.5)		
Heterogeneity: <i>l</i> ² =50%, τ ² =125·73, p=0·07								
Influenza A(H1N1)pdm09								
Australia	181	1137	541	1545		59·8% (49·7 to 67·8)		
Brazil	57	233	643	2053	∎ [■]	31·0% (1·4 to 51·8)		
Chile	93	381	1313	2331		55·4% (41·4 to 66·0)		
Uruguay	9	103	91	802		18·1% (-77·5 to 62·2)		
Random-effects model					\diamond	51.8% (39.0 to 64.6)		
Heterogeneity: <i>l</i> ² =46%, τ ² =78·8357, p=0·1	3							
Influenza A(H3N2)								
Australia	19	114	541	1545	│ _∎ [71·5% (47·7 to 84·4)		
Influenza B								
Australia	56	1020	541	1545		84·7% (78·3 to 89·2)		
Brazil	21	100	643	2053	− ∎	37·5% (-4·2 to 62·5)		
Chile	21	65	1313	2331	— ∎ -	64·5% (37·9 to 79·7)		
Random-effects model					\sim	66-3% (40-7 to 91-9)		
Heterogeneity: <i>I</i> ² =81%, τ ² =397·42, p<0·01					-100 -70 -40 -10 10 30 50 70 90			
					Vaccine effectiveness			

Gharpure R et al, Lancet Global Health 2025

Do they work – moderately protective?

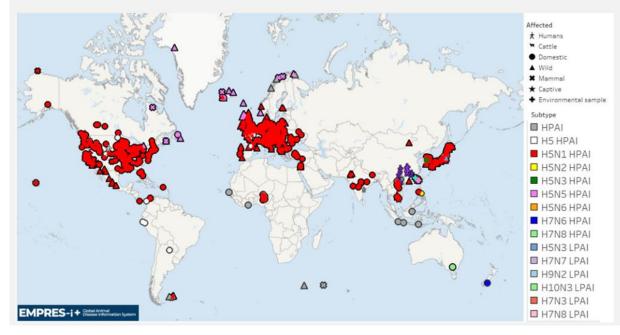
	Test-positive cases		Test-negative controls				Vaccine effectiveness (95% CI)	
	Vaccinated	Total	Vaccinated	Total	_			
Children (age 1–4 years)								
Australia	25	752	66	448			-	87·6% (77·1 to 93·3)
Brazil	24	145	414	1362				46·3% (14·2 to 66·4)
Chile	13	42	353	553				71·3% (41·3 to 85·9)
Random-effects model							$\langle \rangle$	70·9% (47·5 to 94·4)
Heterogeneity: <i>l</i> ² =80%, τ ² =333·61, p<0·0	1							
Children and adults (age 5–64 years) wi	th underlying	health con	ditions					
Australia	172	980	124	447				59·3% (45·9 to 69·4)
Chile	27	148	227	511				50·3% (18·8 to 69·6)
New Zealand	13	64	60	204				28·2% (-44·9 to 64·4)
Random-effects model							$\langle \rangle$	56·6% (46·2 to 67·1)
Heterogeneity: $l^2 = <1\%$, $\tau^2 = 0$, $p = 0.48$								
Older adults (age ≥65 years)								
Australia	165	342	336	525				59·3% (45·0 to 69·8)
Brazil	98	313	181	486				14·4% (-19·1 to 38·5)
Chile	58	167	496	826				39·9% (11·7 to 59·1)
New Zealand	9	37	90	178				72·2% (34·7 to 88·2)
Random-effects model							$\langle \rangle$	47·7% (24·9 to 70·5)
Heterogeneity: I ² =73%, τ ² =403·22, p=0·0	1				-100 -70	-40 -10	10 30 50 70 90	
						Vaccine ef	fectiveness	

Do they work – moderately protective?

Vaccine Registered age group	Vaxigrip Tetra 0.5 mL (Sanofi)	Flucelvax Quad 0.5 mL (CSL Seqirus)	FluQuadri 0.5 mL (Sanofi)	Afluria Quad 0.5mL (CSL Seqirus)	Influvac Tetra 0.5 mL (Viatris)	Fluad Quad 0.5 mL (CSL Seqirus)	Fluzone High- Dose 0.7 mL (Sanofi)
6 months to <5 years	✓	✓	✓	X	✓	X	x
≥5 to <60 years	√ *	√ *	1	1	1	X	X
≥60 to <65 years	√*	√*	✓	1	✓	X	✓
≥65 years	1	1	1	1	1	1	✓

Egg-based influenza vaccines	Cell-based influenza vaccines			
A/Victoria/4897/2022 (H1N1)pdm09-like virus	A/Wisconsin/67/2022 (H1N1)pdm09-like virus			
A/Croatia/10136RV/2023 (H3N2)-like virus	A/District of Columbia/27/2023 (H3N2)-like virus			
B/Austria/1359417/2021 (B/Victoria lineage)-like virus	B/Austria/1359417/2021 (B/Victoria lineage)-like virus			
B/Phuket/3073/2013 (B/Yamagata lineage)-like virus	B/Phuket/3073/2013 (B/Yamagata lineage)-like virus			

Summary


- The virus
- Seasonal influenza and who is at risk?
- Influenza vaccines and do they work?
- Emerging influenza viruses / HPAI
- Next steps

Emerging influenza viruses

Influenza A is known to circulate in many animals

- HPAI: highly pathogenic avian influenza
- LPAI: low pathogenic avian influenza

pathogenicity in birds

HPAI A/H5N1 2.3.4.4b

First detected in Europe in 2020

https://www.cdc.gov/bird-flu/spotlights/h5n1-response-03192025.html

HPAI A/H5N1 2.3.4.4b

- Currently limited impact on human health
 - 70 human cases reported in US since April '24
 - 41 following exposure to cattle
 - 24 following exposure to poultry/birds
 - 64 cases detected through targeted testing
 - 6 cases detected through routine testing
 - 1 death

Emerging flu viruses - Australia

The only continent free of A/H5N1 2.3.4.4b

- Federal government funded strategies to strengthen surveillance, preparedness and response capability
- A federal response will be led by Dept of Agriculture, Fisheries and Forestry (DAFF)

Emerging flu viruses - Australia

A number of recent HPAI outbreaks detected in Australia

- HPAI H7N8 Victoria (2025)
- HPAI H7N3 Victoria (2024)
- HPAI H7N9 Victoria (2024)
- HPAI H7N8 NSW, ACT (2024)

HPAI outbreaks are the result of Australian lineage LPAI strains 'spilling over' from wild birds into poultry farms, where the virus mutated to become HPA

A program at the crossroads

- The virus
- Seasonal influenza and who is at risk?
- Influenza vaccines and do they work?
- Emerging influenza viruses / HPAI
- Next steps

A program at the crossroads

Declining use of flu vaccines, particularly in high risk populations, will lead to increased morbidity and mortality

No single intervention will turn around this trend: greater collaborative efforts are required